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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Background 

High strength suit ate-rich or sulfide-rich waste streams are generated by 

the industries such as petrochemical, photographic processing, textile mills, pulp 

and paper mills, tannery, molasses fermentation and pharmaceuticals. Such 

wastewaters are mainly treated by the anaerobic processes due to their inherent 

benefits, e. g. high loading capacity, saving in aeration energy cost, low sludge 

production, and methane generation (Fox and Venkatasubbiah, 1996; Janssen et 

al., 1995; Lens et al., 1998; Ranade and Bhirangi, 2001). The anaerobic 

treatment of sulfate-rich wastewater however produces sulfide as results of 

biological sulfate reduction (Rinzema and Lettinga, 1988), which is highly 

nuisance for several reasons: its toxicity effect on methanogens (Khanal and 

Huang, 2002), malodorous, corrosivity effect on materials (Hao et al., 1996), and 

sludge bulking problems in post aerobic treatment (Buisman and Lettinga, 1990). 

Not to mention, the sulfide so produced significantly lowers the energy value of 

biogas as fuel (Ranade and Bhirangi, 2001 ). Because of these ill effects, the 

emission of sulfide must be stringently controlled. 

Today the commonly used methods for sulfide removal are 

physical-chemical processes that include direct air stripping, chemical oxidation or 

precipitation. However the physical-chemical methods are often very costly in 
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daily operation due to high chemical cost and high energy demand (Cork et al., 

1986). These shortcomings have led to the development of biological method for 

sulfide removal, in which sulfide is mainly oxidized to elemental sulfur by the aid of 

microorganisms. The biological sulfur removal process is highly efficient and 

does not require a catalyst or oxidant (except for air) and produces little if any 

biological or chemical sludge for disposal. Sulfate and thiosulfate discharge from 

the process is minor. 

1.2 Objective 

Biological sulfide removal process has been well understood and the 

engineering aspects of biological sulfur removal have been explored as well. 

However, process simplicity and improvement in the technological and economic 

feasibility will make this process more attractive and practical. The objective of this 

study was to explore the potential application of a fixed-film biof ilter to remove 

sulfide from the biogas that contains high hydrogen sulfide level with reclamation 

of elemental sulfur. The effects of different sulfide loading rates, oxygen contents 

in gas flow, and gas flow rates were also investigated. A series of batch tests were 

conducted to quantify the relative contribution of biotic and abiotic components in 

total sulfide oxidation and to assess the possibility of heterotrophic sulfur reducing 

activity. 
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1.3 Thesis Organization 

The thesis is organized in four chapters. Chapter 1 is a general 

introduction providing a brief background of the research. Chapter 2 is the 

literature review, which includes the previous work in the field and the need for this 

study. Chapter 3 is the manuscript entitled "Bioconversion of Sulfide to Elemental 

Sulfur in Trickling Filter", which presents the important findings from the study 

conducted to evaluate the performance of a trickling biofilter for sulfide removal 

and also evaluates the relative contribution of biotic and abiotic components in 

total sulfide oxidation and the possibility of heterotrophic sulfur reducing activity. 

The general conclusions and some recommendations for future study are 

presented in Chapter 4. The references for the manuscript are listed at the end of 

the manuscript. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Overview 

In recent years, anaerobic treatments are becoming popular for the 

treatment of organic-rich wastewater due to: (a) less energy requirement; (b) 

energy generation in the form of methane gas; (c) less sludge generation; (d) 

smaller treatment plant foot print; and (e) less nutrients (nitrogen and phosphorus) 

requirement. However, anaerobic treatment is not a panacea for the treatment of 

all types of high strength wastewater, especially from petrochemical industry, 

photograph processing industry, textile mills, pulp and paper mills, edible oil 

refinery, molasses fermentation, tannery and pharmaceuticals due to the 

presence of high concentration of sulfate and or sulfide (Fox and Venkatasubbiah, 

1996; Janssen et al., 1995; Lens et al., 1998; Ranade and Bhirangi, 2001 ). The 

anaerobic microorganisms utilize sulfate as an electron acceptor thereby 

producing sulfide as an end product, which is reported to have many ill effects 

including, toxicity to methanogens, corrosive effect, health effect, and high oxygen 

demand. Most importantly, the emanation of unpleasant odor of sulfide has been 

a major source of public complains. From these perspectives, control of sulfide 

becomes increasingly important before its final disposal. 
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2.2 Methods for Sulfide Removal 

Different methods for sulfide removal can be divided into two groups: 

physical-chemical processes that include direct air oxidation, chemical oxidation, 

and precipitation and biotechnological process. 

2.2.1 Physical-chemical processes 

Direct air oxidation may eliminate the sulfide through abiotic pathway. 

However, it may result a significant amount of sulfide in the gas phase due to 

stripping, which also requires further treatment. Uncatalyzed oxidation of sulfide 

by air/oxygen is a complex and slow process proceeding through a series of chain 

reactions (Chen and Morris, 1972). Sulfide can be converted to sulfur, thiosulfate, 

or sulfate in the oxidation process depending on the oxygen level and availability 

of catalyst. The chemical oxidation includes chlorination, ozonation, potassium 

permanganate treatment and hydrogen peroxide treatment (Buisman et al., 1991 ). 

The rate and efficiency of such oxidation reactions are appreciably high. But the 

cost of chemicals is often a retarding factor for daily operation. 

In chemical precipitation sulfide can be precipitated as insoluble metal 

sulfides through its reaction with divalent metals such as iron, zinc, copper, etc. 

(Khanal, 2002). The accumulation of insoluble metal sulfide in direct precipitation 

reduces the effective volume of treatment unit, causes clogging of pipings and 

requires further treatment of chemical sludge (Khanal 2002; Cork et al., 1986). 
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By using biotechnological method, sulfide can be converted to mainly to 

elemental sulfur and the drawbacks of physical/chemical methods can be 

alleviated. 

2.2.2 Biological oxidation 

In biological sulfide o,xidation, sulfide is oxidized mainly to elemental sulfur 

with the aid of microorganisms. The process has several merits, which makes it 

more attractive than the physico-chemical processes (Buisman et al., 1991) for 

the following reasons: 

a) Low energy requirement. 

b) Low chemical and disposal costs, because it does not require a 

catalyst or oxidant (except for air), and produces little if any biological 

or chemical sludge for disposal. 

c) Reduction of the discharge of sulfate and or thiosulfate. 

d) Potential for sulfur recovery and reclamation. 

It is preferable that sulfide be oxidized to elemental sulfur instead of 

sulfate. This is because elemental sulfur is nontoxic and non-corrosive and 

requires less oxygen in molar basis. From the economic point of view, elemental 

sulfur is 3 to 8 times more valuable than commercial sulfuring acid (Cork, 1978; 

Kim and Chang, 1991 ). Moreover, elemental sulfur is a valuable byproduct, which 
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can be reused in autotrophic denitrification and bioleaching processes as electron 

donor (Torres et al., 1995; Tichy et al., 1994). 

2.3 Process Microbiology of Biological Sulfide Oxidation 

The microbial group involved in sulfide oxidation belongs to a group of 

colorless sulfur bacteria, of which Thiobacil/us is the best known. 

2.3.1 Thiobacilli 

The genus Thiobacil/us consists of a number of species, which are closely 

related to each other. They are.gram negative, facultative autotrophs, non-spore 

forming, rod shaped, in size of 0.3 x 1 to 3 µm, polarly flagellated and thus motile 

except for the Thiobacil/us novellas. All the members of this genus utilize reduced 

sulfur compounds such as thiosulfate as electron donor and carbon dioxide as 

carbon source. They are able to oxidize sulfide, elemental sulfur, thiosulfate and 

polythionite as energy source. They are obligate autotrophs and are not able to 

utilize organic carbon as an electron and carbon source, with the exception of T. 

novellas. The best growth is reported at 25-35° C and neutral pH, but some 

species are able to live in highly acidic environments, such as T. thiooxidans, 

which grows best below pH 5 (Vishniac and Santer, 1957). 

The five most described members of the Thiobacillus species are: T. 

thioparus, T. denitrificans, T. thiooxidans, T. intermedius, and T. ferrooxidans. 



www.manaraa.com

8 

T. thioparus grows rapidly in a mineral medium containing thiosulfate and 

is able to precipitate abundant sulfur particles. Its optimal growth can be reached 

near pH 7 at 30° C. 

T. denitrificans differs in that it can utilize NOs instead of 02 as a terminal 

electron acceptor at anoxic conditions and carry out denitrification. This 

denitrification is shown in the following bio-chemical reaction: 

(1) 

T. thiooxidans grows at much more acidic range. The best growth is in pH 

range of 2 to 5. Apart from its acid habitat, this species is also distinguished by 

its higher oxidation rate of elemental sulfur compared to T. thioparus and T. 

denitrifacans, which oxidize sulfur rather slowly. 

T. intermedius is a facultative chemolithotroph with a pH range of 3 to 7. 

Its growth is powered by thiosulfate, which acts as an electron donor, and organic 

matter stimulates its growth. 

T. ferrooxidans is a unique organism when taken in the paradigm of 

Thiobacil/us. It is strictly aerobic, obligate autotroph, and has a pH growth range of 

1.5 to 5. It can also use thiosulfate as an electron donor, but it differs from all the 

other Thiobacil/i species in its ability, from which its name is derived, to utilize iron 

as an energy source instead of thiosulfate. 
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2.3.2 Other sulfide removal bacteria 

The other species of bacteria have also been capable of sulfide removal. 

Photoautotrophs have been reported to produce a high percentage of elemental 

sulfur from sulfide (Cork, 1985; Henshaw et al., 1998a, 1998b; Kim et al., 1991, 

1992). For photoautotrophs, the light penetrability is a significant factor for the 

bioreactor design, which is seldom considered in the common reactor design. 

Hansen et al. (1975) found a purple bacterium, which oxidizes sulfide to elemental 

sulfur and sulfate depending on the influent sulfide concentration. When sulfide 

concentration exceeds 2 mg/L, elemental sulfur is the major end-product, whereas 

lower sulfide concentration favors the production of sulfate. 

2.4 Biological Sulfur Cycle and Biological Sulfide Oxidation 

Microbial conversion processes of different sulfur species are shown in 

the biological sulfur cycle in Figure 1 (Janssen et al., 1998). 

There are two main reactions in a biological sulfide oxidation: 

2 HS - + 02 = 2 S O + 2 OH -
tiG0 = -169.35 kJ/mol HS-

2 HS - + 4 02 = 2 so/· + 2 H + 

/j.G0 = -732.58 kJ/mol HS-

(2) 

(3) 
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Under oxygen limiting conditions, that is oxygen concentration is below 

0.1 mg/L, elemental sulfur is the major end-product, while sulfate is mainly formed 

under sulfide limited circumstances. (Janssen et al., 1995) 

Assimilatory 
sulfate reduction 

Organic sulfur 
compounds --... Mineralization 

Dissimilatory sulfate reduction ----1 
Biological and 

spontaneous oxidation 

Sulfur 

Figure1. Biological sulfur cycle 

processes 

\ 
Sulfide 

In addition to the bioconversion of sulfide, chemical oxidation also needs 

to be taken into account, especially under certain conditions at which biological 

activity is limited. Under such circumstance, chemical auto-oxidation of sulfide 

becomes relatively more important. Furthermore, the presence of trace metals 

and nutrients can also enhance the abiotic sulfide rate and efficiency (Khanal, 

2002). Under slightly alkaline conditions, thiosulfate is formed as the major 

product based on the following equation (Chen and Morris, 1972): 

2 HS - + 202 = S203 2· + H20 
!1G0 = -387.35 kJ/mol (4) 
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Previous research has shown that in a sulfide-oxidizing bioreactor, the 

optimal oxygen/sulfide ratio is about 0.7 (Janssen et al., 1995). A maximum sulfur 

production of around 73 ± 10% occurs at an oxygen/sulfide ratio from 0.6 to 1.0; 

but not at the stoichiometrical ratio of 0.5 because of the formation of thiosulfate. It 

also suggest that the sulfide in the influent can not be converted to elemental 

sulfur completely due to the formation of sulfate, either directly produced by the 

excess oxygen or indirectly converted from the thiosulfate which is formed under 

oxygen limited environments. 

Elemental sulfur and sulfate are the main oxidation products of the 

biological sulfide removal process. The concentrations of other sulfur compounds 

found in the effluent other than elemental sulfur, sulfide and sulfate could be 

negligible especially at higher pH of 8.0. With a high sulfide concentration, the 

effluent solution presents dark green color because of the formation of polysulfide 

as intermediates. 

Some researchers found that the biological sulfide oxidation rate was 75 

times faster than the chemical non-catalyzed oxidation rate at a sulfide 

concentration of around 1 O mg/L, but with the increase of sulfide concentration, 
. 

the rate of biological reaction started to decline. The biological rate was only 7 

times faster than the chemical oxidation rate at a sulfide concentration of 100 

mg/L. (Buisman et al., 1990a). In chemical oxidation of sulfide, it was found that a 

high sulfide/oxygen ratio favors the production of sulfur (O'Brien and Birkner, 
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1977; Chen and Morris, 1972). Nevertheless sulfite, thiosulfate and sulfate are 

formed under a low ratio. 

2.5 Factors Affecting Biological Sulfide Oxidation 

Important operating parameters of biological sulfide removal process are 

wastewater flow rate (sulfide-loading rate), oxygen concentration in the reactor, 

sulfide/oxygen ratio, type of support material, and H2S concentration in the 

effluent air (Buisman et al., 1990b; Buisman et a/.1991 ). 

The optimal pH for biological sulfide oxidation in the range of 8.0-8.5, and 

the optimal temperature exists in the range of 25-35QC (Buisman et al., 1989). 

Buisman et al. (1990b) also reported that maximal sulfur production occurs at an 

oxygen concentration of 0:1 mg/L. The optimum sulfide/oxygen ratio is about 0.7 

(Janssen et al., 1995) 

Previous research has shown that there is a linear relationship between 

the logarithm of the sulfide concentration and the redox-potential, and the redox 

potential is determined by the sulfide concentration kinetically rather than 

thermodynamically (Bockris and Reddy, 1970; Berner, 1963; Eckert, 1993). 

Therefore by controlling redox state, an oxygen-limited environment can be 

achieved to minimize the formation of sulfate will be minimized. The optimal redox 

value for sulfur formation is between -147 and -137mV (with reference to standard 

H2 electrode at 30QC and pH 8) [Janssen et al., 1998]. However, the direct 
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placement of ORP electrode in the sulfide oxidizing bioreactor is often poisoned 

by the fouling due to the attachment of sulfur particle. 

2.6 Support Media Used in Biological Sulfide Removal Reactor 

To date, different biomass support media have been used in the biological 

sulfide oxidizing experiments such as reticulated polyurethane (PUR) foam, 

reticulated polyurethane foam coated with polyvinyl chloride (PVC), PVC 

Rasschig ring, polypropene hiflow pall rings and polyethene bio-net. It was 

however found that reticulated polyurethane was not suitable as carrier material 

for the biological sulfide removal process due to the growth of biomass in the inner 

part of foam where oxygen level is often below zero (Buisman et al., 1991). 

--
Different transparent plastic tube materials (PTMs), including Bev-a-Line 

(polyethylene liner with ethyl vinyl acetate shell), FEP (fluorinated ethylene 

propylene), Kynar (polyvinylidene fluoride), PFA (perfluorioalkoxy), polypropylene 

and Tygon (vinyl chloride-vinylidene chloride co-polymer), were also tested to 

determine the best supporting material in a fixed-film biological reactor (Henshaw 

et al., 1999). It was found that the total growth of bacteria was not significantly 

affected by the presence of PTMs, but the fraction of total growth on the tubing 

was significantly higher for Tygon and Bev-a-ling tubing than the other PTMs. 
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2.7 Reactor Configurations for Biological Sulfide Removal System 

Rotational Biological -Contact (RBC) Reactors, Completely Mixed Tank 

Reactors (CSTRs), Upflow Reactors, and Batch Reactors (Buisman, et al., 1990c; 

Janssen, et al., 1995) have been employed for biological sulfide removal. The 

findings of these researches pointed out the importance of reactor configurations 

in the conversion of sulfide to sulfur. The upflow reactor and RBC reactor were 

tested for their suitability for sulfide removal from anaerobic paper mill wastewater, 

respectively (Buisman and Lettinga, 1990). It was concluded that upflow reactor 

was not suitable for this kind of wastewater due to frequent clogging problems 

even though different types of supporting media were tried out. In biorotor reactor 

a sulfide removal rate of 620 mg/L·h was found at HRT of 13 min with a sulfide 

removal efficiency of 95%. 

Fox and Venkatasubbiah (1996) integrated an attached film biological 

sulfide-oxidizing reactor with an anaerobic baffled reactor through effluent 

recycling. This coupled anaerobic/aerobic system was effective in alleviating 

sulfide inhibition of both methanogenesis and sulfate reduction. The thin film 

biological reactor could convert sulfide to elemental sulfur without adding excess 

oxygen, and the product sulfur could be removed from the wastewater stream. 
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CHAPTER 3. BIOCONVERSION OF SULFIDE TO ELEMENTAL SULFUR 

IN TRICKLING FIL TEA 

A paper to be submitted to Water Federation Research 

Qiyong Cao and Shihwu Sung 

Abstract 

In this study a lab-scale (1 L) trickling biofilter was employed to investigate 

the feasibility of biological sulfide oxidation with the rec\fmation of elemental sulfur. 
~Ii)-.!: 

The effect of different oxygen contents (ranging from 3% to 10 %) in the gas flow 

was evaluated under two different sulfide loading rates of 120 mg-S/L-hr and 180 

mg-S/L-hr. The results showed that at sulfide loading rate of 120 mg-S/L-hr, 93.6% 

of influent sulfide was removed at an oxygen content of 5% (by volume). However, 

at a higher sulfide loading rate of 180 mg-S/L-hr, the sulfide removal efficiency 

dropped to 90.8% even with the increase of the oxygen content to 10%. The gas 

flow rate was found to have a significant impact on the sulfide removal efficiency. 

Upon increasing the gas flow to 0.4 Umin from 0.2 Umin, sulfide removal efficiency 

dropped by 17%. 

A series of batch tests were also conducted to quantify the relative 

contribution of biotic and abiotic components in total sulfide oxidation and to 

evaluate the possibility of heterotrophic sulfur reducing activity. The batch test 

results suggest that as high as 88% of the influent sulfide could be oxidized 
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biologically whereas abiotic oxidation could contribute up to 12% of the total 

oxidation. The corresponding sulfide removal rates were 811.8 mg-S/L-hr and 112.2 

mg-S/L-hr, respectively. A significant sulfur reducing activity was also evident in the 

presence of organic matter under anaerobic condition. 

Keywords 

sulfide removal, sulfur production, trickling biofilter, oxygen content, biotic/abiotic 

sulfide oxidation, sulfur-reducing activity 

Introduction 

Sulfide-laden waste streams are produced during anaerobic treatment of 

high strength sulfate-rich wastewaters such as molasses fermentation, edible oil 

refinery, pharmaceutical, sea food processing, distillery etc. (Lens et al., 1998; Fox 

and Venkatasubbiah, 1996). Sulfide is also directly contributed to the waste streams 

by other industrial processes such as tanneries, coal gasification, petrochemical 

plants etc. (Genschow et al., 1996; Janssen et al., 1997). The removal of sulfide is 

essential for several reasons including: its inhibitory effect on methane producing 

bacteria (Khanal and Huang, 2002), corrosive effect on materials (Hao et al., 1996), 

unpleasant odor, chemical oxygen demand (COD) contribution, and sludge bulking 

problems in post aerobic treatment (Buisman and Lettinga, 1990). 

Sulfide removal could be achieved by physico-chemical methods, e.g. direct 

air stripping, chemical oxidation, or chemical precipitation and biotechnological 

process. The physico-chemical methods are often very costly in daily operation due 
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to high chemical cost and high energy demand (Cork et al., 1986). The 

biotechnological process overcomes those demerits, in which sulfide is mainly 

converted to elemental sulfur by the aid of microorganisms. The process has several 

advantages in comparison to the physico-chemical processes (Buisman et al., 

1991 ): a) low energy requirements; b) no chemical and residual disposal costs, 

(except for air/O2), and c) effluent with low sulfate and thiosulfate. Elemental sulfur is 

a desired end product of sulfide oxidation because of its non-toxic, and settleability 

nature, less oxygen requirement and possibility of reclamation and reuse of sulfur as 

a valuable byproduct in autotrophic denitrification and metal bioleaching processes 

(Torres et al., 1995; Tichy et al., 1994) 

The bacteria involved in sulfide oxidation belong to a group of colorless 

sulfur bacteria, of which Thiobacil/us is the best known. Thiobacillus is mostly 

facultative autotrophic, utilizing reduced inorganic sulfur compounds, e.g. sulfide, 

elemental sulfur, thiosulfate and polythionite as electron donors and carbon dioxide 

as a carbon source ($engUI and M0ezzinoglu, 1991; Janssen et al., 1997). The best 

growth is reported at 25-35° C and pH of 8.0 - 8.5 (Buisman et al., 1989). The two 

major bio-chemical reactions of sulfide oxidation are given by: 

2 HS - + 02 = 2 S O + 2 OH -
6G0 = -169.35 kJ/mol HS-

2 HS - + 4 02 = 2 so/- + 2 H + 

6G0 = -732.58 kJ/mol HS-

(1) 

(2) 
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In a suspended growth bioreactor, under oxygen limiting conditions that is 

oxygen concentration below 0.1 mg/L sulfur is the major end product, whereas 

sulfate is mainly formed under sulfide limiting circumstances where oxygen/sulfide 

ratio is greater than 1.0 (Janssen et al., 1995). The researchers also reported that 

the oxygen/sulfide ratio of about 0.7 is the optimum for maximum sulfur production. 

Studied showed that as the sulfide level increased, the chemical oxidation 

started to predominate over biological one. For example, the biological sulfide 

oxidation rate was 75 times faster than the chemical non-catalyzed oxidation rate at 

a sulfide concentration of 10 mg/L, but with the increase of sulfide concentration to 

1 00mg/L, the biological oxidation rate was only 7 times faster than the chemical one 

(Buisman et al., 1990a). This apparently indicates that when the bioreactor is 

overloaded or biological activity is limited, auto-oxidation of sulfide predominates. 

Under such circumstances, significant amount of thiosulfate instead of sulfur 

formation takes place (Janssen et al., 1997). 

The use of fixed-film reactor could eliminate the biomass limiting condition 

thereby facilitating the conversion of sulfide to predominantly elemental sulfur. Such 

strategy thus helps to improve the performance of sulfide oxidizing bioreactor. 

Different biomass support media have been used in sulfide oxidizing bioreactor 

including reticulated polyurethane (PUA) foam, reticulated polyurethane foam coated 

with polyvinyl chloride (PVC), PVC Rasschig ring, polypropene hiflow pall rings and 

polyethene bio-net (Buisman et al., 1991 ). However, most if not all of these studies 

were conducted in a submerged media bioreactor such as Rotational Biological 
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Contact (ABC) Reactors, Completely Mixed Tank Reactors (CSTRs), Upflow 

biofilters, and Batch Reactors (Buisman et al., 1990b; Janssen et al., 1995), and the 

use of trickling filter bioreactor for sulfide oxidation has not been well investigated. 

This study was therefore conducted to evaluate feasibility of biological sulfide 

oxidation in a trickling filter. The effects of different oxygen content in gas flow, gas 

direction and gas flow rate were also investigated. Batch tests were also conducted 

to quantify the relative contribution of biotic and abiotic components in total sulfide 

oxidation and to assess the possibility of heterotrophic sulfur reducing activity. 

Materials and Methods 

Reactor set-up 

A bench-scale cylindrical Plexiglas™ reactor was fabricated in the Chemistry 

Machine Shop at Iowa State University. The reactor with 660 mm internal diameter 

and 3175 mm height (active volume == 1.0 L), was provided with a series of ports for 

mixer, influent inlet, effluent outlet, gas release and sample withdrawal. Figure 1 

shows the schematic of the experimental set-up. The experimental set-up included a 

bench-scale trickling filter, an automated pH controlled feed tank, two sulfide 

scrubbers, and influent and effluent tanks. The bioreactor was operated at room 

temperature of 22 ± 2QC throughout the study. 
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Support media 

The media used for supporting biomass growth was 16 mm. Flexirings (Koch 

Engineering Company, Witchita, KS). The support media provided a porosity of 

approximately 90% when filled in the reactor and a specific surface area of 98 

m2/ma. 

Seed inoculum and start-up 

Activated sludge from the city of Marshalltown wastewater treatment plants 

was used as seed inocula, which had a volatile suspended solid concentration of 

4,350 mg/L. The media was soaked into the seed sludge in which 10 ml of nutrient 

solution was added and the content was mixed intermittently for 3 days at 37QC. 

Thereafter, the whole content was transferred into the biofilter reactor. 

Initially the reactor was started with an influent sulfide concentration of 80 

mg-S/L at a flow rate of 1.5Uhr. The gas flow rate through the biofilter was 

maintained at 0.2 Umin with 5% oxygen content in the gas phase. The sulfate, 

dissolved sulfide, pH in both influent and effluent and oxygen content in gas flow 

were measured on daily basis. Within five days of the operation, the system reached 

a quasi-steady state with sulfide removal efficiency of approximately 75%. 

Substrate 
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The feed solution consisted of growth nutrients and synthetic sulfide solution 

as a source of sulfide. Growth nutrient solution contained 8 g/l of NH4CI, 2g/l of 

MgSO4•7H2O, 5 g/l of KH2PO4, and 100 ml trace element solution, which was 

adopted from Vishniac and Santer (1957) (Table 1 ). In all the experiments, sulfide 

feed solution was prepared by dissolving Na2S•9H2O in nanopure water to achieve a 

desired concentration of aqueous sulfide. For pH control, 0.5 M HCI was used. All 

the chemicals used for the preparation of synthetic wastewater were of analytical 

grade. 

Bioreactor operation 

The reactor was initially started with an influent sulfide concentration of 80 

mg-S/l at a flow rate of 1.5Uhr. A gas flow of 0.2Umin containing 3% oxygen was 

maintained through the reactor. 5 ml nutrient solution was fed into the reactor 

everyday. The sulfide concentration was then increased to 120 mg-S/L. The oxygen 

content in the gas flow was varied from 3% to 10%. The desired oxygen content was 

achieved through online dilution of pure oxygen using nitrogen gas. The feed pH 

was maintained in the range of 8.0 to 8.4 by using a pH probe and a controller (TBl-:-

Bailey Advantage Series TB84PH Analyzer). The sulfate, dissolved sulfide, 

thiosulfate, pH in both influent and effluent and oxygen content in gas flow were 

measured and monitored daily. 
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Batch tests on biotic/abiotic sulfide oxidation 

Biotic/abiotic sulfide oxidation test was conducted in a 0.5-l, air-tight vessel 

shown in Figure 2 (Khanal, 2002). The vessel was filled with support media to mimic 

the actual bioreactor scenario. A magnetic stirrer was used for mixing. In batch test, 

both biotic (biological) and abiotic (chemical) sulfide oxidation rates were evaluated 

using support media with biofilm and without biofilm, respectively. 

Experiments were conducted in three runs. Run 1 was designed to test the 

total (biological and chemical) sulfide oxidation rate. 300 ml of aqueous sulfide 

solution and 1 ml of nutrient solution were added into the vessel, and 34 supporting 

media transferred from the continuous biofilter reactor with biofilm placed in test 

vessel. In runs 2 and 3, the same amount of Na2S solution and sterile plastic media 

were used. The difference between runs 2 and 3 was that there was no nutrient in 

the aqueous sulfide solution during run 3, but in run 2, 1 ml nutrient solution was 

added, so that the effect of nutrient supplementation on chemical sulfide oxidation 

rate and efficiency could be determined. All the Na2S stock solutions were prepared 

by dissolving reagent grade Na2S-9H2O in nano pure water. Nutrient solution was 

same that of continuous experiment. 

The initial pH was adjusted and maintained at 8.0 by using 0.5 M HCI and 

phosphate buffered system (0.08M Na2HPO4 + NaH2PO4) (Chen and, Morris, 1972). 

The influent sulfide concentration was varied from 40 mg-S/L to 160 mg-S/L in all the 

three runs. The oxygen content (3%, 5%, or 8% balanced by N2 gas) was monitored 

by flow meters and gas monitor, and gas flow rate was maintained at 0.2 Umin. 
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During the batch tests, samples were taken at certain time inteNal until no 

significant change in residual sulfide was obseNed. The dissolved sulfide, sulfate, 

thiosulfate, and pH of sample solution were measured. 

Batch tests on heterotrophic sulfur reducing activity 

In this batch experiment the sulfur reducing activity under heterotrophic 

conditions was investigated. In the test, serum bottles (250 ml) were used. Seed 

sludge was taken from the continuous experiment. The composition of the substrate 

used in the test is shown in Table 2 (Khanal, 2002). NaHCO3 was used as buffer. 

150 ml substrate was added into each bottle allowing 100 ml headspace. The 

sulfur particle taken from the biofilter was air dried and then was placed into the 

bottles with the concentrations of 0, 50, 100, 150, 200 and 400 mg-S/L. The pH was 

adjusted to 7.5 by addition of HCI solution. The bottles were purged with N2 and 

capped tightly before being put on an incubator shaker running at 200 rpm at 37QC. 

After 5 days, the dissolved sulfide of liquid samples was determined. 

Analysis 

Dissolved sulfide was determined by the lodometric Method specified in 

Standard Methods (APHA et al., 1998). Sulfate was analyzed by ion chromatograph 

[Dionex, model DX 500; Column: Metachem Technologies Inc. AN 300 (150 x 5.5 

mm)], and the eluent was 3.5 mM sodium carbonate/1.0 mM sodium bicarbonate at 

a flow rate of 2 mUmin. Detection was made by a conductivity detector (Dionex 
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model CD 20). Thiosulfate was detected by this method, but with the eluent of 7.0 

mM sodium carbonate/2.0 mM sodium bicarbonate at a flow rate of 1.5 mUmin. 

Oxygen content was measured and controlled with a multiple gas detector 

(BW Defender model 04-2000). The pH of both influent and effluent were measured 

daily with an pH meter (Cole-Parmer model 05669-20), calibrated at room 

temperature with standard pH buffers of 7.0 and 10.0 routinely. 

Results and Discussion 

Effect of oxygen content and sulfide loading rate 

Figure 3 summarizes the results of experiments conducted at different 

oxygen contents and sulfide loading rates. From the figure, it is apparent that at 0 2 

content of 3%, the sulfide removal efficiency was 85% at sulfide loading rate of 120 

mg-S/L-hr. When oxygen content was increased to 5%, the sulfide removal 

efficiency increased to as high as 94%. With further increasing the oxygen content to 

8%, the removal efficiency didn't improve significantly. However at a higher sulfide 

loading rate of 180 mg-S/L-hr, the sulfide removal efficiency reduced to as low as 

50% at 5% of oxygen content. With further increase oxygen content to 8% and 10%, 

the remove efficiency was improved significantly. The respective removal 

efficiencies were 85% and 91 %. 

The poor sulfide removal efficiency at lower 0 2 content was attributed to 

oxygen limiting condition. This is because at higher sulfide level, the available 
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-oxygen was not enough to oxidize the sulfide.· Thus, the ()frtimal oxygen content. 

was found to depend on sulfide loading rate. In this study, 5% and 10% oxygen 

contents were optimum for 120 and 180 mg-S/L-hr, respectively. 

Figure 4 presents the effluent sulfide and sulfate concentrations for the 

biofilter operating at sulfide loading rate of 120 mg-S/L-hr (i.e., influent sulfide 

concentration of 80 mg-S/L and flow rate of 1.5 Uhr). The oxygen percentage was 

varied from 3% to 5% then to 8%, and the gas flow rate was maintained at 0.2 Umin. 

It was evident from the figure that the mean sulfide removal efficiencies were 86%, 

94%, and 87%, respectively at 02 content of 3%, 5%, and 8%. Thus, 5% oxygen 

content was found to be optimum for sulfide oxidation at influent sulfide 

concentration of 80 mg-S/L. The results also showed a concomitant increase in 

effluent sulfate levels. The increased level of sulfate in the effluent was at higher 

oxygen content was most likely contributed by biological conversion of sulfide to 

sulfate. Several researchers reported an optimum oxygen/sulfide (molar) ratio of 0. 7 

in a suspended growth system to prevent the formation of excess sulfate and at 

higher ratio, sulfate formation would become dominant (Buisman et al., 1990; 

Janseen et al., 1997). In this study the oxygen:sulfide (molar) ratio of varied from 4.3 

to 11.4. However, the optimum ratio for biooxidation of sulfide in a trickling filter has 

so far been not reported. Abiotic oxidation of sulfide was also reported to contribute 

to effluent sulfate level (Chen and Morris, 1972). However, a series of abitioc batch 

oxidation study showed that such contribution was not significant (will be discussed 

later). 
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Effect of gas flow rate 

The effect of gas flow rate on sulfide removal efficiency is shown in Figure 5. 

When gas flow rate was increased from 0.2 Umin to 0.4 Umin at constant oxygen 

content of 5%, sulfide removal efficiency dropped appreciably from 93.6% to 76.6%. 

The low sulfide removal efficiency at higher gas flow rate was possibly due to the 

low gas residence time (GRT). This is because at higher flow rate, the contact time 

between oxygen and attached biomass was insufficient for through sulfide oxidation. 

This finding was consistent with Ranade and Bhirangi (2001) who also observed 

improved H2S removal efficiency at longer GRT. The effluent sulfate was found to 

decrease with increase in gas flow rate. This finding further substantiate that the 

bioreactor was operating under oxygen limiting condition. The operation of sulfide 

oxidizing bioreactor under oxygen limiting condition was found to favor sulfur 

formation instead of sulfate (Janssen et al., 1997). 

Effect of gas flow direction 

During the continuous operation, the system was run at influent sulfide 

concentration of 80 mg/L, gas flow rate of 0.2 Umin with a direction from top to down 

(co-current with liquid flow), and oxygen content of 5%. After the system reached 

steady state (the steady study was believed to reach when effluent sulfide and 

sulfate levels did not vary more than 5% for 10 consecutive days of operation), the 

gas direction was then reversed to counter current to the liquid flow. Figure 6 shows 
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the performance of the biofilter before and after the change of gas flow direction. It 

was observed that after the gas direction was reversed, sulfide removal efficiency 

was improved from 94% to 96%, and the effluent sulfate concentration dropped 

slightly. Thus, the counter curr~nt direction of gas and liquid flows was most 

appropriate for effective sulfide oxidation. When the gas and liquid flows run in 

opposite directions, the contact time for both phases was longer. Most importantly, 

the liquid film resistance is greatly reduced and better oxygen transfer to the biofilm 

could be achieved. As a result, efficient sulfide oxidation was achieved compared to 

co-current direction. Therefore, in the following experiments, the biofilter was 

operated under counter current mode. 

Sulfur mass balance 

A sulfur mass balance was carried out during the continuous sulfide 

biooxidation experiment to quantify the distribution of sulfur species. The influent 

sulfide was considered to end up into the following components: a) effluent sulfate; 

b) effluent thiosulfate; c) residual sulfide in the effluent; and d) elemental sulfur. The 

sulfide consumed in biomass synthesis and/or metal precipitation was regarded as 

unaccounted fraction. All the species of sulfur were expressed as the sulfur 

equivalent. The elemental sulfur was not measured; instead it was estimated by 

subtracting the sum of (a), (b) and (c) from the influent sulfide concentration. This is 

because at pH of 8.0, the formation of polysulfldes and thionates was insignificant 

(Janssen et al., 1997). The sulfur balance result is summarized in Table 3 and the 

plot is shown in Figure 7. It was obvious that with the increase of oxygen content, 
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the effluent sulfide was decreased progressively with concomitant improvement in 

sulfide removal efficiencies from 50.7% to 85.1% then to 90.8% at oxygen 

percentage of 5%, 8%, and 10%, respectively. The major part of the influent sulfide 

recovered was elemental sulfur and thiosulfate, accounting respectively 49% and 

33% of the total influent sulfide of 120 mg/L at the end of the experiment. The 

effluent sulfate also increased with the increase of the oxygen percentage, which 

was in close agreement with earlier studies on sulfide bio-oxidation (Buisman et al., 

1989, 1990b). Detection of high concentration of thiosulfate in the effluent apparently 

suggests a significant auto-oxidation of sulfide during oxygenation. The auto-

oxidation may have taken place in the reactor within the void spaces where the 

sulfide could have come in contact with oxygen in absence of sufficient biomass. 

Biological/chemical sulfide oxidation rate 

A series of batch tests were conducted to evaluate the quantitative 

contribution of biological and chemical components on overall sulfide oxidation rate. 

The results of the batch tests are shown in Figure 8. The results apparently showed 

that biological sulfide oxidation rate was significantly higher than the chemical 

oxidation rate. The maximum biological oxidation rate was 811.8 mg-S/L-hr whereas 

chemical oxidation rates were just 112.2 mg-S/L-hr (with trace metals/nutrients) and 

27.6 mg-S/L-hr (without trace metals/nutrients). The biological reaction rate was 

about 7 times faster than the chemical one at a sulfide concentration of 80 mg/L, 

which was close to the other researcher's results (Buisman et al., 1990). The batch 

studies further suggest that biological sulfide oxidation could have contributed as 



www.manaraa.com

29 

high as 88% of the total oxidation where as chemical oxidation could have 

contributed up to 12% of the total oxidation in the bioreactor. Moreover, the 

presence of trace metals and nutrients was found to have significant catalytic effect 

on chemical sulfide oxidation rate. This finding was in close agreement with that of 

O'Brian and Birkner (1977). 

Figure 9 reflects the quantitative distribution of different sulfur components at 

various influent sulfide levels and different operation conditions. The elemental sulfur 

was estimated indirectly with the same method used in continuous experiment. It is 

observed that a considerable amount of thiosulfate was formed in the batch tests, 

which proves that abiotic sulfide oxidation played an important role in sulfide removal. 

Heterotrophic sulfur reducing activity 

In the real wastewater treatment system, sulfide oxidation becomes more 

complicated due to the presence of organic compounds, such as acetate and 

propionate. Because oxygen can only penetrate 150 to 200 µm into a biofilm 

(Hooijmans et al., 1990; Wijffels et al., 1995), it is likely that an anaerobic 

circumstance prevails within the sulfur sludge and sulfur reducing bacteria may grow 

inside sulfur sludge particles in the presence of organic matter so as to reduce sulfur 

back to sulfide. 

Widdel and Bak (1991) reported that the genus Desulfuromonas are able to 

use acetate as electron donor to reduce elemental sulfur to sulfide according to the . 

following reaction: 
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(3) 

In this batch test, black precipitate could be visually observed due to the 

formation of FeS (Figure 10). Figure 11 reflects the existence of sulfur reducing 

activity under different sulfur concentration. It is most likely due to sulfur accepts 

electron from organic compounds and was reduced to sulfide according to equation 

(3). It is shown that with the increase of sulfur concentration, the reduction activity 

was changed from first-order reaction to zero-order reaction. 

Figure 12 shows that the sulfide removal efficiency of the biofilter decreased 

once acetate of 200mg/l was dosed into the system. The system was operated at 

influent sulfide concentration of 120 mg/L, gas flow rate of 0.2 Umin, and oxygen 

content of 10%. Only in 5 days, the removal efficiency dropped seriously from 91.7% 

to 78.1 %. At the same time, abundant thiosulfate was produced as a major end-

product The sulfate level in effluent didn't change obviously. Buisman and Lettinga 

(1990) also found that the sulfide removal efficiency markedly decreased with the 

removal of acetate while treating anaerobic wastewater of a papermill. They also 

conducted an anaerobic batch test in which sulfide was detected while acetate and 

propionate were removed. 

Conclusions 

In this study, a trickling biofilter was developed to remove sulfide and convert 

it to elemental sulfur. It was observed that sulfide removal efficiencies of 93.6% and 

90.8% were obtained at sulfide loading rates of 120 mg-S/L-hr and 180 mg-S/L-hr 
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respectively with 02 contents of 5% and 10%. The results indicate that gas flow rate 

is an important parameter for the system performance. It was found that a flow rate 
I 

of 0.2 Umin was favorable to the sulfide oxidation with a removal efficiency of 

93.6%, whereas only 76.6% of sulfide was rem9ved under a higher gas flow rate of 

0.4 Umin. 

· A sulfide removal rate of 811.8 mg-S/L-~r was found in biological batch study 

at a sulfide concentration of 80 mg/I, whereas under the same conditions the rates of 

chemical oxidation were only 112.2 (with trace metal/nutrients) and 27.6 (without 

trace metal/nutrients) mg-S/L-hr. The biological rate was about 7.2 times faster than 

the chemical oxidation rate. It was suggest that as high as 88% of the influent sulfide 

could be oxidized biologically whereas abiotic oxidation could only contribute up to 

12% of the total oxidation. 

With the presence of organic compounds, the removal efficiency of the 

biofilter deteriorated most likely due to the existence of sulfur reduction, which was 

approved in the batch test on heterotrophic sulfur reducing activity. Except for the 

recovery of elemental sulfur, sulfate and thiosulfate were detected as end products 

most likely due to the chemical sulfide oxidation. 
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' Tables and Fig1ures 

Table 1. Trace element sol~tion compositions 

Constituents Concentrations (g/L) 

Ethylenediamine 
50.0 

tetra-acetic acid 

ZnSO4•?H2O 22.0 

CaCl2 5.54 

MnCl2•4H2O 5.06 

FeSO4•?H2O 4.99 

(NH4)5Mo1O24 •4H2O 1.10 

CuSO4•5H2O 1.57 

CoCl2•6H2O 1.61 

I 
' 
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Table 2. Substrate compositions (for 1qo mg/I COD) for batch tests 
on heterotrophic sulfu !reducing activity 

i 

Constituents Cor:centrations (mg/L) 

CeH12Os 467.29 

NH4CI 44.64 

KH2PO4 4 

K2HPO4 8.01 

MgCl2•6H2O 15 

CaCl2 20 

CoCb• 6H2O 0.28 

FeCb 3.55 

NiSO4•6H2O 4 

CuSO4•5H2O 1.57 

NaHCO3 187.5 
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Table 3. Sulfur mass
1 
balance 

Influent so/· I s2· 50 s2·Removal 
S2032· 

Date Sulfide Efficiency 
(mg-S/L) (mg-S/L) {rg-S/L) (mg-S/L) 

(%) (mg-S/L) 

1 120 25.76 5.22 87.99 1.03 26.68 

2 120 44.92 7.28 62.68 5.12 47.77 

3 120 32.36 7.73 75.21 4.70 37.33 

4 120 34.61 6.70 114.00 4.69 38.33 

5 120 37.67 7.39 68.57 6.37 42.86 

6 120 45.74 5.33 163.63 5.30 46.98 

7 120 43.49 2.48 59.16 14.87 50.70 

8 120 41.92 3.30 52.87 21.91 55.94 

9 120 40.06 4.96 45.70 29.28 61.92 

10 120 40.30 9.70 34.97 35.03 70.86 

11 120 46.54 12.31 I 29_41 31.74 75.49 

12 120 56.07 11.24 27.34 25.35 77.22 

13 120 46.91 10.73 25.11 37.25 79.08 

14 120 45.43 11.03 23.58 39.96 80.35 

15 120 60.08 10.75 i 21.77 27.40 81.86 
16 120 63.66 11.94 20.69 23.71 82.76 
17 120 64.38 10.79 19.20 25.63 84.00 
18 120 47.64 13.22 17.87 41.27 85.11 
19 120 64.34 14.19 15.36 26.11 87.20 
20 120 51.17 16.25 14.20 38.38 88.17 
21 120 49.36 13.85 14.77 42.02 87.69 
22 120 49.17 14.15 14.06 42.62 88.28 
23 120 40.93 16.59 15.83 46.65 86.81 
24 120 47.55 16.10 13.97 42.38 88.36 
25 120 39.79 16.42 12.75 51.04 89.38 

I 

26 120 38.82 15.11 I 111.82 54.25 90.15 
27 120 38.15 13.46 11.46 56.93 90.45 
28 120 : 

39.70 12.03 11.80 56.47 90.17 
29 120 39.61 10.77 11.02 58.60 90.82 
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Oxygen inlet 

Gas outlet 

Sulfide Sample 

Fine diffuser 

Magnetic Stirrer 

Figure 2. Completed mixed reactor for batch studies on biotic/abiotic 
sulfide oxidation I 
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Figure 3. Sulfide removal efficiencies at difrerent sulfide loading rates 
and oxygen contents 
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Influent sulfide: 80 mg-SIL Gas flow rate: 0.2 Umin 0 2 : 5% 
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Figure 8. Biotic/abiotic sulfide oxidation in batch studies 
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Figure 1 0. Heterotrophic sulfur reducing activity. Bottle 1 contained the 
sample of 200 mg-S/L. Bottle 2 was the blank sample. 



www.manaraa.com

-_J --.... 
(J) 

I 
0) 

E -"O 
Q) 
0 
::J 

"O 
0 .... 
c.. 
Q) 
32 
;:;::: 
::J 

(J) 

10 

8 

6 

4 

2 

0 
0 

48 

100 200 300 400 
Elemental sulfur concrntration (mg/L) 
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CHAPTER 4. GENERAL CONCLUSIONS 

4.1 Engineering ~ignificance 

In this study, a fixed-film trickling filter yvas developed and its suitability for 
I 

biological sulfide removal was investigated. 9ifferent operation parameters were 

examined to optimize the bioconversion of sulf,de to elemental sulfur. 

The City of Cedar Rapids Water Pollution Control has constructed a new 

anaerobic pretreatment facility treating high str~ngth industrial wastes. This facility 

employs a chemical-scrubbing unit followed by, a Continuous Stirred Tank Reactor 

(CSTR) for biological sulfide removal. The ca~ital investments required for these 

proprietary systems are exorbitant. 

The biofilter reactor, as proposed 'n this study, may have several 

advantages over the CSTR system. The use of fixed-film reactor eliminates the 

biomass limiting condition thereby facilitating the rapid conversion of sulfide to 

predominantly elemental sulfur and thus improves the performance of sulfide 

oxidizing bioreactor. Capital savings in the form of smaller reactor volumes, 

elimination of aeration blowers, and fewer solids settling tanks can make the 

biofilter design an economically attractive optTn. The primary end product sulfur 

can be used as fertilizer, feed substrate for recuperating heavy metal 

contaminated sludge or electron donor for autotrophic denitrification. With these 
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potential economic and operative advantages,' biological sulfide removal may find 

full-scale applications in future. 

4.2 Summary and Conclusions 

A trickling biofilter was developed and investigated to oxidize sulfide to 

elemental sulfur. Different sulfide loading rate~, oxygen contents in gas flow, and 

gas flow rates were evaluated in this study. The relative contribution of biotic and 

abiotic components in total sulfide oxidation and the possibility of heterotrophic 

sulfur reducing activity were also evaluated. Based on this study, the following 

conclusions were drawn: 

1. Sulfide removal efficiencies of 9~.6% and 90.8% were obtained at 
I 

sulfide loading rates of 120 I mg-S/L-hr and 180 mg-S/L-hr, 

respectively, with an 02 content of 5% and 10%. 

2. Gas flow rate was found to be an important parameter for the system 

performance. It was found that sulfide was removed 93.6% at a flow 

rate of 0.2 Umin, however with the increase of gas flow to 0.4 Umin, 

sulfide removal efficiency dropped significantly to 76.60%. 

3. The batch test results suggest thrt as high as 88% of the influent 
I 

sulfide could be oxidized biologicc3!lly whereas abiotic oxidation could 

only contribute up to 12% of the total oxidation. The corresponding 
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sulfide removal rates were 811.$ mg-S/L-hr and 112.2 mg-S/L-hr 

respectively at sulfide concentr~tion of 80 mg/L. The biological 
I 

oxidation rate was about 7 .2 times faster than the chemical rate. 

4. With the presence of organic bompounds, the sulfide removal 

efficiency of the biofilter dropped from 91.7% to 78.1% only in five 

days. It was most likely due to the rxistence of sulfur reduction, which 

was approved in the batch test on heterotrophic sulfur reducing 

activity. 

5. Except for the recovery of elemental sulfur, sulfate and thiosulfate 

were detected as end products mqst likely due to the chemical sulfide 

auto-oxidation. 

4.3 Recommendations for Future Study 

In this study, most of the parameters affecting biological sulfide oxidation 

have been investigated and effort has been made to clarify as many hypotheses 

as possible within the limited time of the s1udy. However, some hypotheses 

require further study. Recommendations for future study are listed as follows: 

1. Other than synthetic wastewate[' feasibility of biological sulfide 

oxidation in the trickling filter from rral wastewaters should be tested. 
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2. At the terminal stage of continuo~s experiments, acetate as organic 

substrate was added into the feed ng water to evaluate the impact of 

organic compound to the system. It was found that sulfide removal 

efficiency dropped obviously, ard the situation became more 
I 

complicated. The effect of organic compound to the sulfide oxidation 

should be further investigated. 

3. A great amount of elemental sul~ur was formed during the sulfide 
I 

removal process, thus the potent al for recovery and reuse of the 

sulfur should be further studied. 

4. Batch test results show the potentlal of heterotrophic sulfur reducing 

activity. It can be concluded that pfrt of the formed sulfur attached to 

the wall of the biofilter reactor and ~upport media could be reduced to 
I 

sulfide again under anaerobic circufllstance. Further study is needed 

to quantify the heterotrophic sulfur reducing activity in the biofilter 

reactor. 

5. This study mainly focused on aqueous sulfide oxidation, further 
I 
I 

investigation is needed to study :the feasibility of gaseous sulfide 

oxidation by integrating the sulfide oxidizing bio-reactor with scrubbing 

unit. 
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